Structural determinants of potency and stereoselective block of hKv1.5 channels induced by local anesthetics.
نویسندگان
چکیده
Block of hKv1.5 channels by bupivacaine is stereoselective, with (R)-(+)-bupivacaine being 7-fold more potent than (S)-(-)-bupivacaine. The study of the effects of chemically related enantiomers on these channels may help to elucidate the structural determinants of stereoselective hKv1.5 channels block by local anesthetics. In this study, we analyzed the effects of (R)-(+)-ropivacaine, (R)-(+)-mepivacaine, and (S)-(-)-mepivacaine on hKv1.5 channels stably expressed in Ltk- cells. (R)-(+)-Ropivacaine inhibited hKv1.5 current and induced a fast initial decline superimposed to the slow inactivation during the application of depolarizing pulses, which reached steady state at the end of 250-msec depolarizing pulses. The concentration-dependence block induced by (R)-(+)-ropivacaine yielded a KD value of 32 +/- 1 microM [i.e., 2.5-fold more potent than (S)-(-)-ropivacaine]. (R)-(+)-Ropivacaine block also was voltage dependent, with a fractional electrical distance (delta) of 0.156 +/- 0.003 (n = 14) referred to the inner surface. Both (S)-(-)- and (R)-(+)-mepivacaine blocked hKv1.5 channels, with KD values of 286.8 +/- 34.1 and 379.0 +/- 56.0 microM, respectively [i.e., block was not stereoselective (p > 0.05)]. (S)-(-)-Mepivacaine and (R)-(+)-mepivacaine block displayed no apparent time-dependence due to a very fast dissociation rate constant. However, block by mepivacaine enantiomers was voltage dependent, with delta values of 0.154 +/- 0.015 and 0.160 +/- 0.008 for the (S)-(-)- and (R)-(+)-enantiomers, respectively. We conclude that (1) (R)-(+)-ropivacaine and mepivacaine enantiomers block the open state of hKv1.5 channels and (2) the length of their alkyl substituent at position 1 determines the potency and the degree of stereoselectivity.
منابع مشابه
Stereoselective effects of the enantiomers of a new local anaesthetic, IQB-9302, on a human cardiac potassium channel (Kv1.5).
1. The N-substituent of IQB-9302 has the same number of carbons as bupivacaine, but it exhibits a different spatial localization (n-butyl vs cyclopropylmethyl). Thus, the study of the effects of IQB-9302 enantiomers on hKv1.5 channels will lead to a better knowledge of the determinants of stereoselective block. 2. The effects of the IQB-9302 enantiomers were studied on hKv1.5 channels stably ex...
متن کاملThe effect of nifedipine and baclofen on spinal anesthesia induced by local anesthetics
The primary mode of action of local anesthetics is through sodium channel and axonal conduction blockade. Local anesthetics have also extensive effects on pre-synaptic calcium channels that must function to stimulate the release of neurotransmitters. Thus, interference with calcium channel conductance may enhance spinal anesthesia with local anesthetics. The present study was designed to invest...
متن کاملThe effect of nifedipine and baclofen on spinal anesthesia induced by local anesthetics
The primary mode of action of local anesthetics is through sodium channel and axonal conduction blockade. Local anesthetics have also extensive effects on pre-synaptic calcium channels that must function to stimulate the release of neurotransmitters. Thus, interference with calcium channel conductance may enhance spinal anesthesia with local anesthetics. The present study was designed to invest...
متن کاملBupivacaine effects on hKv1.5 channels are dependent on extracellular pH.
1. Bupivacaine-induced cardiotoxicity increases in hypoxic and acidotic conditions. We have analysed the effects of R(+)bupivacaine on hKv1.5 channels stably expressed in Ltk(-) cells using the whole-cell patch-clamp technique, at three different extracellular pH (pH(o)), 6.5, 7.4 and 10.0. 2. Acidification of the pH(o) from 7.4 to 6.5 decreased 4 fold the potency of R(+)bupivacaine to block hK...
متن کاملLithium increases potency of lidocaine-induced block of voltage-gated Na+ currents in rat sensory neurons in vitro.
We and others have obtained data both in vivo and in isolated nerve preparations suggesting that Li+ increases the potency of local anesthetics in the block of conduction. In the present study we have tested the hypothesis that Li+ increases the potency of local anesthetic-induced block of conduction via a shift in the potency of local anesthetic-induced block of voltage-gated Na+ channels. To ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 54 1 شماره
صفحات -
تاریخ انتشار 1998